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I. INTRODUCTION 

Several approaches to the blunt body flow problem at zero angle of 

attack a re  established theoretically and are in use at the present time. 

Most of these approaches a re  summarized in Chapter 6 of Hayes and 

Probstein . 
integrating the inviscid equations of flow in the subsonic o r  subsonic- 

1 They consist of various approximate techniques for 

supersonic region (Figure 1). 

Limiting 
char act e r i s t i c 

Sonic line 

Figure 1. Subsonic -Supersonic Flow Field 
at Zero Angle of Attack 



A complete integration covers the flow field, up to the limiting characteristic - 

that is ,  the characteristic (or characteristics) farthest downstream which 

intersects the sonic line - since otherwise, disturbances in the supersonic 
.. 

flow may affect the subsonic region through the sonic line. In order to 

provide input for method of characteristics calculations, i t  is necessary 

to extend the integration somewhat downstream of the limiting characteristic 

in order to avoid computational difficulties near Mach 1. 

Expansion techniques valid near the axis of symmetry and the like 

a r e  useful but do not give sufficient detail for  flow field prediction. 

The inverse problem has been treated successfully by several authors. 

In this approach, a shock shape is assumed and the integration is then 

carried out as  i f  the problem were of the initial value type. Using 

initial conditions computed at  the specified shock, the equations a r e  numerically 

integrated in some manner until the computed value of the stream function 

vanishes, say; this locus of points i s  the resulting body shape. Since such 

a procedure is not mathematically stable when applied to elliptic (in this 

case, subsonic) systems of equations, either a smoothing technique 

must be employed to remove oscillations and irregularities from the 

solution, o r  some other method must be used to avoid the instability. 

Zlotnick and Newman2, among several papers 3’ 4s employing the 

same basic concept, solve the inverse problem by a straightforward 

finite -difference method. They smooth out unwanted oscillations by 

systematic fitting of polynomials. Vaglio -Laurin and F e r r i  also 3 
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t reat  the "transonic" region between the sonic line and the limiting 

characteristic in a consistent manner by integrating along characteristics. 

Garabedian and Lieberstein6, 7, an adaptation of whose method appears 

in  section 111 of this report, introduce a complex transformation which, in  

a sense, a l ters  the nature of the equations of motion from elliptic to 

hyperbolic, thereby circumventing the instability problem. 

integration from the shock to the unknown body is carried out in the 

complex domain, and the results a re  then projected onto the real  plane. 

The stability of the procedure is rooted in the possibility of analytically 

continuing the functions into the complex domain. 

The 

The direct problem, in which the body shape is given and the flow 

field, including the shock, is solved for, has been treated by Emmons 

et al. using a streamtube technique. Initial approximations to the 

shock shape and body pressure distribution a re  assumed, and the 

resulting flow field i s  determined by the streamtube relations. 

iterative scheme is employed to correct the shock shape and pressure 

distribution until the difference between two successive solutions i s  

slight. 

8 

An 

The direct solution of Belotserkovskii lo  is based on the method 

of integral relations formulated by Dorodnitsyn". 

between the body and the shock is split up into a number of equally 

spaced strips, and the equations of motion a r e  integrated from the 

body to each s t r ip  boundary. 

dependent va- 

The flow field 

Polynomial expressions a r e  assumed for the 

d e s  in the direction normal to the body; upon substitution 
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in the integrated equations, there is obtained a set of ordinary differential 

equations for the coefficients of the polynomials in te rms  of the coordinate along 

the body. These equations a r e  solved with assumed values of the stagnation 

point standoff distance and the initial velocities at  the s t r ip  boundaries, and 

the solution i s  iterated so a s  to satisfy properly singularities which occur 

at the sonic line. 

method. 

Traugott12 and Holt13 have presented versions of this 

All the methods described above can in principle be generalized to 

the case of a blunt body at angle of attack. 

be formulated for small angles of attack, a s  has been done by Vaglio- 

Laurin and F e r r i  for the finite -difference marching procedure , although 

they present no results. 

small angle of attack and at the same time develops a solution in the form 

of a ser ies  expansion valid near the axis of symmetry of the shock wave 

(i. e. , near the stagnation line). 

permits the dependence on the meridbnal coordinate to be eliminated, 

and the ser ies  expansion results in a set of ordinary differential 

equations that a r e  integrated inward from the given paraboloidal shock. 

Swigart's results for zero angle of attack agree well with experimental 

and other theoretical results f o r  spherical bodies and ellipsoidal bodies 

of moderate eccentricity, even up to the sonic point; however, his expansion 

procedure would not be expected to be accurate for blunt bodies with 

A perturbation technique can 

3 

Swigart14 perturbs the equations of motion in the 

The angle of attack perturbation 
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relatively small corner radii, unless many te rms  in the ser ies  were 

retained . 
Swigart observes that his computed body (dividing) streamline at  angle 

of attack differs 

the shock i s  normal to the free stream vector -- in other words, the 

body entropy is not the maximum entropy in the flow field. 

of the body entropy is still a matter of controversy and has not been 

definitely resolved. Swigart's result may be due to the perturbation 

scheriie he has employed. 

the yawing sharp cone problem, a straightforward perturbation in the 

angle of attack does not give the proper body entropy distribution. 

from the streamline that passes through the point where 

The question 

15 As pointed out by F e r r i  in connection with 

16 17 The papers of Bazzhin and Minailos represent important recent 

Soviet work in the field of blunt body flow at large angles of attack. 

Both apply the method of integral relations with one strip in the direction 

normal to the body, Bazzhin to the two-dimensional flat plate problem 

and Minailos to the problem of a yawing axisymmetric body. Vaglio-Laurin 18 3 

in addition to his treatment of the application of the PLK method to the calcu- 

lation of blunt-body flows, presents an analysis similar to Bazzhin's for 

asymmetric two -dimensional shapes. 

allowances for the possibility that the dividing streamline does not pass 

through the normal point of the shock. Bazzhin summarizes the results 

of his calculations, which were performed with the initial assumption 

Both Soviet authors make 

-5 -  



that the dividing streamline did pass through the normal point on the shock. 

He notes that f o r  angles of attack sufficiently large ( >30°) that his  resulting 

solution indicated that the initial assumption on the dividing streamline was 

incorrect, it was not possible to iterate the solution in order  to obtain 

successive values of the entropy on the body. 

one -strip Belotserkovskii-type method does not provide sufficient detail 

to clarify the problem of body entropy. 

He concludes that the 

A comparison of the various methods developed for zero angle of 

attack flows, with a view to determining the most suitable approach for 

the calculation of flows past axisymmetric bodies at large angles of 

attack, reveals that the inverse methods a r e  conceptually simplest. 

With the problem of mathematical stability almost completely resolved, 

there is  little difficulty in  sketching the broad outlines of an  inverse 

technique, in which the equations of motion a r e  integrated in a step- 

by-step marching procedure starting from the given shock and working 

toward the unknown body. 

method,however, i s  rather discouraging. There is  scant experience 

at present in finite-difference methods for three independent variables. 

A preliminary investigation of the Garabedian and Lieber stein method 

showed that the problems involved in formulating a method for integrating 

the equations in the complex domain were much more formidable than 

expected, and the approach was abandoned. It is also recognized that 

the selection of the proper shock shape associated with a desired 

A look into the details of the numerical 
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body requires a certain amount of experience, particularly for  large 

angles of attack. 

Attention therefore is centered on the direct methods. The streamtube 

method appears undesirable both from the aspect of its formulation for 

three dimensions and from certain computational problems caused by the 

lack of accuracy in computing streamline curvatures numerically. 

method of integral relations has the advantage that the variation of 

properties in the direction normal to the surface i s  taken into account 

through expansion in series and integration, so that there remains only 

the variation in two surface directions. Furthermore, the meridbnal 

variation can be approximated by Fourier series. Finally, the method 

allows a systematic treatment of the sonic surface, and the integration 

can be extended downstream to provide input for calculations of the 

supersonic flow. 

The 

In section LI, there appears a preliminary formulation of the method 

of integral relations for the problem of large angles of attack. 

formulation is restricted to a single strip in the direction normal to the 

body surface, and the cross-flow term is approximated by assuming a 

simple sinusoidal variation in the meridional direction. 

This 

Section III is concerned with the Garabedian and Lieberstein analysis 

which has been used for  the problem of zero angle of attack. 
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11. h4ETHOD OF INTEGRAL RELATIONS FOR REAL-GAS FLOW 
OVER AN AXISYMMETRIC BODY AT LARGE ANGLES 

OF ATTACK: PRELIMINARY ANALYSIS 

A. General Equations 

\ Line of 

Figure 2. Surface Geometry and Coordinate System 

A geode s ic ,  surface -oriented orthogonal coordinate system 

(h, n ,e )  is employed, where M is the distance normal to the body, h = o 

is the body surface, 

originating at the stagnation point & =o , 6 is the angle between 

/G is surface distance along geodesic curves 
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the line of symmetry and a geodesic, measured on the body at the stagnation 

point, B = 0 is the leeward plane of symmetry, and e== is the windward 

plane of symmetry. Then a general element of length A s  is given by 

Here 
k A , =  I f  - 

> 

where X A  (A ,  8 )  is the radius of curvature of the surface in the A - 
direction, ( A ,  (4) is the radius of curvature in the 8 4 direction, 

and J q T  is the surface metric f o r  the @ -coordinate defined, for  

instance, by Struik'" Minailos l7 uses a cylindrical coordinate system 

with axis along the axis of symmetry of the body; however, i t  is felt that 

the probable improvement in convergence achieved with a coordinate 

system with origin at  the stagnation point outweighs the slight additional 

complication. 

In this coordinate system the velocity components in the ( A ,  M, e) - 
directions a r e  denoted U, P, W ) ,  respectively. The continuity equation 

and the equations of momentum i n  the k- and 8 - directions a r e  
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dcJ. e . - +  k 2w 
- c  A, P bH 

By manipulating and making use of equation (31, equations (4) and (5) can be 

i s  replaced by the dimensionless variable f = , where 6 i s  

the value of h at the shock wave. In te rms  of (A, f, B )  , equations 

( 3 ) .  (61, and ( 7 )  become, respectively, 

3 A; 
3 8  

t - - L ;  a - P; 3 Q l  
t -- 

3n.  a s  
(.' = 4 2 , 3 )  
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Equations ( 8 )  a re  now integrated with respect to 5 from 0 (body) 

to 1 (shock), and the coefficients , R ;  , L ;  a r e  assumed to have 

linear profiles in S : 

where is the value of at  the body and is the value of 1'; 

shock. The results of these integrations a re  

The equation of conservation of stagnation enthalpy 

becomes at the body (u+ = o ) 
1 

Since the entropy is constant on the body, 

Equation (13) and the f i rs t  and third of equation (11) can be solved 

>b4 

2 h  34 J& 
for -L& by eliminating %' and , resulting in the fundamental 

equation 
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The second of equation (1 1) yields 

Equation (17) governs the variation of the shock quantities. The 

general shock relations are written in terms of the velocity components 

V,v 00 (free stream) and V,,, (behind the shock) normal to the 

shock wave. The conditions of continuity, normal momentum conservation, 

and energy conservation z e  

The condition of tangential momentum conservation yields the relations 
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while the velocity component 5 can be related to the normal velocity 

component and the shock geometry by 

Equations (18) - (  23) essentially render the shock variables a s  functions 

of the shock geometry. An additional relation, the equation of state in te rms  

of p ,  p ~ 

andh-, is needed to complete the system. The system is solved in an 

iterative manner for equilibrium air, whose equation of date in this instance 

is in the form of curve fits, by requiring compatibility of equations (18) -( 20) 

with the equation of state. 

B. Method of Solution for  a Sinusoidal Distribution in 8 

In the preceding analysis, the only assumption has been that the 

profiles in the a-direction a r e  linear. The relevant equations a r e  now 

written in the planes 8 Ot K , where by symmetry = ?!? = --. =: 0,  

as as 
dw- 
a& 

w = o1 - # 0 . Equation (14) becomes 

while equation (17) becomes 
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The shock conditions (18)-( 20) remain unchanged, while equations (21 )  

and ( 2 3) be come 

with Vldw = I/, & (2 f 32 4 e Here the plus sign i s  taken 

on the windward side of the body axis of symmetry, the minus sign on the 

leeward side. 

in  Figure 3. 

shock angle defined by 

The shock geometry and the angles /? and 5 a r e  illustrated 

The shock conditions a r e  now considered to be functions of the 

-14- 



I 
Shock 

Figure 3. Shock Wave Geometry 

The radius of curvature R, ( A )  in  equation (2)  is the radius of 

curvature of the body contour in  the plane of symmetry, while &,is the 

distance from the body to the body axis measured along the normal to  the 

body. 

system with X - axis along the body axis and ) - axis (7 Z 0 )  in  the 

plane of symmetry, as indicated in Figure 4. 

It is most convenient to define an auxiliary cylindrical coordinate 

Then 

( 2 9 )  

( 3 4 E z everywhere). 
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# " 
Last point 
on nose 

(At least this 
much of body 

X must be 
spherical) + 

Figure 4. Auxiliary Cylindrical Coordinate System 

The metric ,/a is easiest to evaluate i f  i t  is assumed that 

the body contour is  spherical at least down to the stagnation point, with radius 

Let the slope of the body at  the last point on the sphere be 6, e The value of 

the metric on the nose sphere i s  

R, . 

- below body axis 

+ above body axis 

= R, Q k [ a  7 Jo) 

while i ts  value on the res t  of the body i s  
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Of course it would be possible to evaluate the metric for other configurations. 

It remains to evaluate the cross-flow term * appearing in the 
38  

This i s  done by assuming that the integrated equations (24) and (25). 

variation of the cross  -flow velocity component in the circumferential direction 

is given with adequate accuracy by 

7% w = w  &a 
1 

while the variation of the other flow quantities (enthalpy, u, ) is given by 

etc. Here the superscripts 0 ,  , Tr refer to the values of 8 at which 

the functions a r e  evaluated. In the surface B = E  the equation of 

conservation of stagnation enthalpy ( 12) g' ive s 

A '  

The quantity * in the planes 8. =o, 7r is then determined from the ae- 
e quation 

evaluated at  either the shock o r  the body. 
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The differential equations (241, (25), and (28), together with the 

shock conditions (18)-( 20), (26), and (27iand equations (32) and (33) 

for 

(for successive values of A- ) in the planes & = O , T  . The procedure to 

determine an unknown point, given the solution at one o r  more previous 

points, i s  a s  follows: 

3 w/D@ , a r e  sufficient to determine the s olution point-by-point 

1. The right-hand side of equation (25) i s  evaluated at  the previous 

point to determine 2! ( wUl5 , and this derivative i s  multiplied 
4th 6 

by the change in h between the points and added to the previous value 

of ( ‘2i$i5, yielding a first  approximation to 

point; o r  a more  accurate numerical procedure is used. 

(28) to determine a fir st approximation to d . 

(f$rL at the unknown 

The same i s  done to equation 

2. An iterative scheme is developed to determine that value of A 

at  the unknown point which yields the computed value of 

using the shock conditions. 

‘f 4 Q ) ~  , 
This step replaces the tedious differentiation 

of the shock relations in other treatments of the method of integral relations. 

3. The right-hand side of equation (24) i s  evaluated at  the previous point, 

at  the unknown point. U G  a s  in step 1, to yield a first  approximation to 

4. Using this value of wc , the body enthalpy is computed from 

2 x, = f i - ;  q+ (34) 

The constant value of the entropy on the body together with the equation of 

state then yield the values of the other thermodynamic variables. 



I 

5. A more accurate solution is obtained by an iterative procedure, 

using standard numerical techniques. 

The computation outlined above must be performed simultaneously 

in the windward ( €3 =tr ) and leeward ( €3 -0 ) planes so that equation 

(32) can be evaluated. 

directions away from the assumed stagnation point. 

points on the body, equation (24) is  singular and cannot be solved 

unless the right-hand side vanishes along with the left. 

sonic points represent natural boundaries of the solution, although i t  

can of course be extended through them with proper choice of the 

starting conditions. 

The equations a r e  thus integrated in both 

At the two sonic 

Hence the 

There a r e  four unknown parameters to be determined by the solution: 

the location of the stagnation point ( 6, ), the shock standoff distance eo 

and slope 

on the body s, . 
by satisfying the two sonic point conditions., Vaglio -Laurin18 and Bazzhin 16 

make use of a mass-continuity relation a s  a third condition, and Bazzhin makes 

use of a fourth condition on f, without success. 

opposite the stagnation point, and the value of the entropy 

Two of these parameters a r e  essentially determined 

R. F. Probstein* has pointed 

out that neither of the last two conditions may be appropriate, and a study is 

Results of the study will be reported presently being made of this subject. 

later. 

be derived to specify the solution uniquely. 

In the meantime i t  will be a s s u m  d that appropriate conditions can 

*Private communication . 
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The complete integration is iterated according to the following 

plan: 

1. Values of two of the unknown parameters so , 0, , ,la , and S, 

a re  guessed. The solution i s  developed until the sonic points a r e  approached, 

and the value of the right -hand side of equation (24)  is then obtained by 

extrapolation. 

2 .  Two alternative solutions a r e  developed by respective variation 

of the unknown parameters. The change in the right-hand side of equation 

( 2 4 )  at the sonic points corresponding to each variation is noted. 

3. New values of the unknown parameters a r e  chosen to minimize 

the right -hand side of equation (241, based on the information obtained 

in steps 1 and 2. 

4. The procedure i s  iterated until a satisfactory solution i s  reached. 

C, Future Work 

Future work on this task will be devoted to clarifying the details 

of the one -strip sinusoidal analysis, programming this analysis and 

interpreting the results, and generalizing the method to provide a more 

accurate solution. 

- 20- 



III. FLOW FIELD DETERMINATION IN THE SUBSONIC REGION 
AT ZERO ANGLE OF ATTACK 

A more complete report on this topic will be published in the near future. 

In the meantime, this short description of the mathematical basis of the 

approach of Garabedian and Lieberstein 687 will Berve a s  an introduction 

to the subject. 

The governing differential equation of flow in te rms  of the stream 

function ?' is 

and (y, a r e  the axial and radial velocity components corresponding 

to the coordinates ( ~ r , f ) .  
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If we set  

then equation (35 )  can be put into the following form: 

where A = 2 + i s  ,,.$ : t - L s  a re  the characteristic coordinates 
J ,  

of the system. 

We augment these equations with the following set of initial conditions, 

where 

shape and a r e  not given here. 

+,  r' I - - -  , -fu must be derived for an assumed analytic shock 

The set represented by (39) yields explicit 

I F *  

information on the dependent variables as functions of 
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We now set 

S =  5 + i 7  . 

c 

7 and keep real. Specifically, we keep 5 a s  a parameter and 

a s  the independent variable. This extension into the complex domain is 

completed when at  .t = 0 , the initial values a r e  also extended into 

the complex domain in the same manner a s  already described. 

relevant flow quantities a re  obtained whenever 

point i s  obtained whenever )L = 0 . 
for different values of the parameter 

field can be mapped out. 

Physically 

. The body 1 = *  
This initial value problem is repeated 

5 so that the entire subsonic flow 

The method described above has been programmed for digital 

computation. Its extension from a perfect gas to equilibrium air is 

largely a matter of changing the coefficient P , and extending the 

Mollier diagram curve fits into the complex domain by substitution in the 

curve fit equations. This extension has been formulated and recently programmed, 

a nd will be the major subject of the forthcoming report. 
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